The tangent classifier

نویسندگان

  • José R. Berrendero
  • Javier Cárcamo
چکیده

Given a classifier, we describe a general method to construct a simple linear classification rule. This rule, called the tangent classifier, is obtained by computing the tangent hyperplane to the separation boundary of the groups (generated by the initial classifier) at a certain point. When applied to a quadratic region, the tangent classifier has a neat closed-form expression. We discuss various examples and the application of this new linear classifier in two situations under which standard rules may fail: When there is a fraction of outliers in the training sample, and, when the dimension of the data is large in comparison with the sample size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments with an Extended Tangent Distance

Invariance is an important aspect in image object recognition. We present results obtained with an extended tangent distance incorporated in a kernel density based Bayesian classifier to compensate for affine image variations. An image distortion model for local variations is introduced and its relationship to tangent distance is considered. The proposed classification algorithms are evaluated ...

متن کامل

Learning Discriminant Tangent Models for Handwritten Character Recognition

Transformation invariance is known to be fundamental for excellent performances in pattern recognition. One of the most successful approach is tangent distance, originally proposed for a nearest-neighbor algorithm (Simard, LeCun and Denker, 1993). The resulting classifier, however, has a very high computational complexity and, perhaps more important, lacks discrimination capabilities. We presen...

متن کامل

Recognition of handwritten digit with transformed invariant distance - Project Final Report - Due 12 / 14 / 07 Buyoung

This paper presents a method to classify handwritten digit based on tangent vectors, which are the linear derivatives of transformations. The purpose of tangent vector is to find the distance between manifolds; a substitute of the classical Euclidean distance. Using the tangent vector, a satisfying performance was achieved, invariant to transformation. While implementing the classifier, we impr...

متن کامل

The Tangent Kernel Approach to Illumination-Robust Texture Classification

Co-occurrence matrices are proved to be useful tool for the purpose of texture recognition. However, they are sensitive to the change of the illumination conditions. There are standard preprocessing approaches to this problem. However, they are lacking certain qualities. We studied the tangent kernel SVM approach as an alternative way of building illumination-robust texture classifier. Testing ...

متن کامل

Classification of Radiographs in the ‘Image Retrieval in Medical Applications’ - System (IRMA)

In this paper we present a new approach to classifying radiographs, which is the first important task of the IRMA system. Given an image, we compute posterior probabilities for each image class, as this information is needed for further IRMA processing. Classification is done by using an extended version of Simard’s tangent distance within a kernel density based classifier. We propose a new dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012